1.4 Separable Equations and Applications

Recall in Section 1.2, we solved questions like

$$
\begin{equation*}
\frac{d y}{d x}=f(x) \tag{1}
\end{equation*}
$$

The idea is integrating both sides. Can we apply the same idea for the following question?
Example 1. Find solutions of the differential equation $\frac{d y}{d x}=y \sin x .(1)=k(y) \cdot f(x)$
ANs: If $y \neq 0$, we can divide both sides by y, and multiply both sides by $d x$.

$$
\frac{d \cdot y}{y}=\sin x d x
$$

Integrate both sides, we have

$$
\begin{aligned}
& \int \frac{d y}{y}=\int \sin x d x \Rightarrow \ln |y|=-\cos x+c_{1} \\
\Rightarrow & e^{\ln |y|}=e^{-\cos x+c_{1}} \Rightarrow|y|=e^{c_{1}} \cdot e^{-\cos x} \\
\Rightarrow & y=\frac{ \pm e^{c_{1}} \cdot e^{-\cos x}=c e^{-\cos x}(c \neq 0)}{\text { is a constant } c \neq 0} \\
\Rightarrow & y=c e^{-\cos x}, c \neq 0 \text { is constant }
\end{aligned}
$$

Note $y \equiv 0$ also satisfies (1), So $y \equiv 0$ is also a solution.

Figure. The solution curves for $\frac{d y}{d x}=y \sin x$.

General Separable Equations

In general, the first-order differential equation $\frac{d y}{d x}=f(x, y)$ is separable if $f(x, y)$ can be written as the product of a function of x and a function of y :

$$
\begin{equation*}
\frac{d y}{d x}=f(x, y)=g(x) k(y) \tag{2}
\end{equation*}
$$

- If $k(y) \neq 0$, then we can write

$$
\begin{equation*}
\frac{d y}{k(y)}=g(x) d x \tag{3}
\end{equation*}
$$

- To solve the differential equation we simply integrate both sides:

$$
\int \frac{d y}{k(y)}=\int g(x) d x+C
$$

- Note we also need to check if $k(y)=0$ gives us a solution.

Implicit, General, and Singular Solutions

- General solution: A solution of a differential equation that contains an "arbitrary constant" C.

For example, in Example 1, $y=C e^{-\cos x}, C \neq 0$ is a constant is a general solution.

- Singular solution: Exceptional solutions cannot be obtained from the general solution.

In Example 1, $y=0$ is a singular solution.

- Implicit solution The equation $K(x, y)=0$ is commonly called an implicit solution of a differential equation if it is satisfied (on some interval) by some solution $y=y(x)$ of the differential equation.

For example, in Example 1, $\ln |y|=e^{-\cos x}+C$ is an implicit solution

Example 2. Find solutions of the differential equation $\quad 2 \sqrt{x} \frac{d y}{d x}=\sqrt{1-y^{2}}$.
ANS: Note $1-y^{2} \geqslant 0 \Rightarrow-1 \leqslant y \leq 1$
If $\sqrt{1-y^{2}} \neq 0, x \neq 0$, we have

$$
\begin{aligned}
& \int \frac{d y}{\sqrt{1-y^{2}}}=\int \frac{1}{2} \frac{1}{\sqrt{x}} d x \\
& \Rightarrow \sin ^{-1} y=\sqrt{x}+c \\
& \Rightarrow \quad y(x)=\sin (\sqrt{x}+c)
\end{aligned}
$$

If $\sqrt{1-y^{2}}=0, \quad y(x) \equiv \pm 1$, which
also satisfy the given equation
So the equation has general solution

$$
y(x)=\sin (\sqrt{x}+c)
$$

and singular solutions

$$
y(x) \equiv \pm 1
$$

Example 3. Find the particular solution if the initial value problem separable

$$
2 y \frac{d y}{d x}=\frac{x}{\sqrt{x^{2}-16}}, \quad y(5)=2
$$

Ans: We have

$$
\begin{aligned}
& \int 2 y d y=\int \frac{x}{\sqrt{x^{2}-16}} d x \longrightarrow \int \frac{x}{\sqrt{x^{2}-16}} d x \\
& \text { Let } u=x^{2}-16 \text {, then } d u=2 x d x \\
& \Rightarrow y^{2}=\sqrt{x^{2}-16}+c \\
& \text { As } y(5)=2 \text {, } \\
& \Rightarrow x d x=\frac{1}{2} d u \\
& \text { Thus } \int \frac{x}{\sqrt{x^{2}-10}} d x=\int \frac{\frac{1}{2} d u}{\sqrt{u}}=\sqrt{u}+C \\
& =\sqrt{x^{2}-16}+c \\
& 4=2^{2}=\sqrt{5^{2}-16}+c=3+c \\
& \Rightarrow C=1 .
\end{aligned}
$$

So

$$
y^{2}=\sqrt{x^{2}-16}+1 \quad \text { (implicit solution) }
$$

or

$$
y= \pm \sqrt{\sqrt{x^{2}-16}+1}
$$

Natural Growth and Decay

The differential equation

$$
\begin{equation*}
\frac{d x}{d t}=k x \quad(k \text { a constant }) \tag{4}
\end{equation*}
$$

serves as a mathematical model for a remarkably wide range of natural phenomena.

Population Growth

- Suppose that $P(t)$ is the size of a population, say of humans, or insects, or bacteria, having constant birth and death rates β and δ.
- These rates are measured in births or deaths per individual per unit of time.
- Then during a short time interval Δt, there occur roughly

$$
\begin{equation*}
\beta P(t) \Delta t \quad \text { births } \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta P(t) \Delta t \quad \text { deaths. } \tag{6}
\end{equation*}
$$

- So the change in $P(t)$ is approximately

$$
\begin{equation*}
\Delta P \approx(\beta-\delta) P(t) \Delta t \tag{7}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\frac{d P}{d t}=\lim _{\Delta t \rightarrow 0} \frac{\Delta P}{\Delta t}=k P \tag{8}
\end{equation*}
$$

where $k=\beta-\delta$.

- Thus the population $P(t)$ satisfies our differential equation

$$
\begin{equation*}
\frac{d P}{d t}=k P \tag{9}
\end{equation*}
$$

Example 4 (Population growth) In a certain culture of bacteria, the number of bacteria increased sixfold in 10 h . How long did it take for the population to double?
ANS: Let $x(t)$ be the population at time t

$$
\begin{aligned}
& \quad \frac{d x(t)}{d t}=k x, \quad x(10)=6 x(0)=6 x_{0} \\
& \Rightarrow \quad \int \frac{d x}{x}=\int k d t \\
& \Rightarrow \ln x=k t+c_{1}(x>0) \\
& \Rightarrow x=e^{\ln x}=e^{k t+c_{1}}=\frac{e^{c_{1}}}{\frac{\pi}{c}} e^{k t}=C \cdot e^{k t} \\
& \Rightarrow x(t)=c e^{k t} \\
& \text { As } x(0)=x_{0}, x(0)=c e^{k \cdot 0}=x_{0} \Rightarrow c=x_{0} \\
& \text { As } x(10)=6 x_{0}, x(10)=x_{0} e^{10 k}=6 x_{0} \\
& \Rightarrow \\
& \Rightarrow e^{10 k}=6 \Rightarrow k=\frac{\ln 6}{10} \text {. So } x(t)=x_{0} e^{\frac{\ln 6}{10} t}
\end{aligned}
$$

The population will double when

$$
\begin{aligned}
& x(t)=x_{0} e^{\frac{\ln 6}{10} t}=2 x_{0} \\
\Rightarrow & e^{\frac{\ln 6}{10} t}=2 \Rightarrow \ln e^{\frac{\ln 6}{10} t}=\frac{\ln 6}{10} t=\ln 2 \\
\Rightarrow & t=\frac{10 \ln 2}{\ln 6} \quad \mathrm{~h} \approx 3.87 \mathrm{~h}
\end{aligned}
$$

Radioactive Decay

- Consider a sample of material that contains $N(t)$ atoms of a certain radioactive isotope at time t.
- It has been observed that a constant fraction of these radioactive atoms will spontaneously decay during each unit of time.
- Thus mathematically, the sample behaves like a population with a constant death rate and no births, leading once again to our differential equation

$$
\begin{equation*}
\frac{d N}{d t}=-k N \tag{10}
\end{equation*}
$$

- The value of k depends on the particular radioactive isotope.

Example 5 (Natural decay) A specimen of charcoal found at Stonehenge turns out to contain 63% as much ${ }^{14} C$ as a sample of present-day charcoal of equal mass. What is the age of the sample?

Note for ${ }^{14} \mathrm{C}, \quad k \approx 0.0001216$
ANS:

$$
\begin{aligned}
& \quad \frac{d N}{d t}=-k N, N(0)=N_{0} \\
& \text { We need to find } t \text { when } N(t)=0.63 N_{0} \\
& \int \frac{d N(t)}{N}=-\int k d t \\
& \Rightarrow \ln N=-k t+C_{1} \\
& \Rightarrow N(t)=C e^{-k t} \\
& \text { As } N(0)=N_{0}, N(0)=C e^{-k .0}=C=N_{0} \\
& \text { We solve } N(t)=N_{0} e^{-k t}=0.63 N_{0} \text { for } t \\
& \Rightarrow e^{-k t}=0.63 \Rightarrow-k t=\ln 0.63 \\
& \Rightarrow t=-\frac{\ln 0.63}{0.0001216} \approx
\end{aligned}
$$

Cooling and Heating
According to Newton's law of cooling, the time rate of change of the temperature $T(t)$ of a body immersed in a medium of constant temperature A is proportional to the difference $A-T$, ie.,

$$
\begin{equation*}
\frac{d T}{d t}=k(A-T) \tag{11}
\end{equation*}
$$

where k is a positive constant.
Example 6

- A 4-Ib roast, initially at $50^{\circ} \mathrm{F}$, is placed in a $375^{\circ} \mathrm{F}$ oven at $5: 00 \mathrm{P} . \mathrm{M}$.
- After 75 minutes it is found that the temperature $T(t)$ of the roast is $125^{\circ} \mathrm{F}$.
- When will the roast be $150^{\circ} \mathrm{F}$, that is, medium rare?

ANS: We take t in minites. with $t=0$ corresponding to SP.M. We do assume that any instant temperature $T(t)$ of the roast is uniform throughout.

- We have

$$
\begin{aligned}
& T(0)=50^{\circ} F, \quad T(75)=125^{\circ} F, \quad T(t)<375^{\circ} F \\
& \frac{d T}{d t}=k(375-T)(\text { sep. }) \\
& \Rightarrow \int \frac{d T}{375-T}=\int k d t \\
& \Rightarrow-\int \frac{d(375-T)}{375-T}=\int k d t \\
& \Rightarrow-\ln (375-T)=k t+c_{1} \\
& \Rightarrow \ln (375-T)=-k t-c_{1} \\
& \Rightarrow 375-T=e^{-c r^{c}} e^{-k t}=c e^{-k \tau} \\
& \Rightarrow T(t)=375-c e^{-k t}
\end{aligned}
$$

Since $T(0)=50^{\circ} \mathrm{F}$

$$
\begin{aligned}
& T(0)=50=375-c \\
\Rightarrow & C=325 \\
& T(t)=375-325 e^{-k t}
\end{aligned}
$$

Since $T(75)=125$

$$
\begin{aligned}
& \Rightarrow \quad 125=375-325 e^{-75 k} \\
& \Rightarrow \quad 325 e^{-75 k}=375-125=250 \\
& \Rightarrow \quad e^{-75 k}=\frac{250}{325} \\
& \Rightarrow \quad-75 k=\ln \frac{250}{325} \\
& \Rightarrow \quad k=-\frac{1}{75} \ln \frac{250}{325} \approx 0.0035
\end{aligned}
$$

The question asks us to find t when $T(t)=150$
Set

$$
\begin{aligned}
& 375-325 e^{-0.0035 t}=150 \\
\Rightarrow & t=-\frac{1}{0.0035} \ln \frac{225}{325} \approx 105 \mathrm{~min}
\end{aligned}
$$

So the roast should be removed at about

$$
6: 45 \mathrm{PM}
$$

